Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Методология науки
Избранное
Публичные лекции
Лекции для школьников
Библиотека «Династии»
Интервью
Опубликовано полностью
В популярных журналах
Из Книжного клуба
Статьи наших друзей
Статьи лауреатов «Династии»
Выставка
Происхождение жизни
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Новости науки

 
10.03
Глобальное потепление создало экологическую ловушку для очковых пингвинов

09.03
При помощи вибрационных сигналов гусеницы зазывают товарищей и прогоняют конкурентов

06.03
Что общего у голых землекопов и «голых обезьян»?

03.03
Древние и продвинутые виды сосуществовали после глобального пермо-триасового вымирания

02.03
Выяснилось, как именно ацетилирование регулирует активность белка p53






Главная / Библиотека / Из Книжного клуба версия для печати

«Вечность». Глава из книги

Шон Майкл Кэрролл


Вечность

Шон Майкл КЭРРОЛЛ

Вечность

В поисках окончательной теории времени

(Sean Michael Carroll. From Eternity to Here: The Quest for the Ultimate Theory of Time)

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы?


Глава 2. Тяжелая рука энтропии

Есть — тоже довольно неприглядно. ... В рот начинает поступать всякая всячина, и после искусной обработки языком и зубами я переправляю результат на тарелку для окончательной рихтовки ножом, вилкой и ложкой. Это, по крайней мере, имеет хоть какой-то терапевтический эффект, если только речь не идет о супе или еще чем-нибудь жидком, — вот уж настоящее наказание. Затем следует утомительная процедура замораживания, разборки и раскладывания по полкам, пока не придет пора отнести эти продукты в «Гастроном», где меня ждет, надо полагать, быстрое и щедрое вознаграждение за труды. Там я таскаюсь по проходам с тележкой или корзинкой, расставляя банки и пакеты по их законным местам.
Мартин Эмис. Стрела времени1

Забудьте о космических кораблях, пусковых установках и стычках с внеземными цивилизациями. Если вам нужна леденящая душу история, по-настоящему создающая впечатление пребывания в чужеродной среде, то вы должны повернуть время вспять.

Конечно, можно было бы взять обычный сюжет и рассказать его наоборот: он заключения к началу. Этот литературный прием известен под названием «обратной хронологии» и далеко не нов: еще Вергилий применял его в своей «Энеиде». Однако для того чтобы грубо вытряхнуть читателей из уютного гамака привычного представления о времени, ваши герои должны во всей красе продемонстрировать, что такое «жить назад». Причина дискомфорта, вызываемого подобными описаниями, заключается в том, что все мы — реальные люди — испытываем течение времени одинаково благодаря непрерывному увеличению энтропии во Вселенной. Увеличение энтропии и определяет стрелу времени.

В Зазеркалье

Френсис Скотт Фицджеральд в своей «Загадочной истории Бенджамина Баттона», по которой не так давно сняли фильм с Брэдом Питтом в главной роли, рассказывает о жизни человека, родившегося стариком и с течением времени теряющего годы. В клинике, где Бенджамин появляется на свет, нянечки вполне предсказуемо впадают в страшное недоумение.

Перед ним, запеленутый в огромное белое одеяло и кое-как втиснутый нижней частью туловища в колыбель, сидел старик, которому, вне сомнения, было под семьдесят. Его редкие волосы были седыми, длинная грязно-серая борода нелепо колыхалась под легким ветерком, тянувшим из окна. Он посмотрел на мистера Баттона тусклыми бесцветными глазами, в которых мелькнуло недоумение.

— В уме ли я? — рявкнул мистер Баттон, чей ужас внезапно сменился яростью. — Или у вас в клинике принято так подло шутить над людьми?

— Нам не до шуток, — сурово ответила сестра. — Не знаю, в уме вы или нет, но это ваш сын, можете не сомневаться.

Холодный пот снова выступил на лбу Баттона. Он зажмурился, помедлил и открыл глаза. Сомнений не оставалось: перед ним был семидесятилетний старик, семидесятилетний младенец, чьи длинные ноги свисали из колыбели.2

В рассказе нет упоминаний о том, как чувствовала себя при этом бедная миссис Баттон (хорошо, что хотя бы в киноверсии новорожденный Бенджамин размером с обычного младенца, пусть даже старого и покрытого морщинами).

Вследствие очевидной экстравагантности самой идеи течение времени в обратную сторону используется для создания комического эффекта. Алиса Льюиса Кэрролла, оказавшись в Зазеркалье, встречается с Белой Королевой и изумляется — оказывается, эта женщина умудряется жить одновременно вперед и назад во времени. Королева вдруг начинает вопить от боли и размахивать пальцем:

Алиса тут же спросила:

— Что случилось?

— Сейчас, сейчас случится! — снова завела Королева. — Я уколю палец булавкой, ой-ой-ой!

— И скоро вы собираетесь уколоться? — насмешливо спросила Алиса.

— Совсем скоро, — стонала Королева. — Начну прикалывать шаль булавкой и уколю-ууу! — заныла она.

И в это мгновение булавка расстегнулась, Королева протянула к ней руку, и...

— Осторожно! — крикнула Алиса. — Вы уколетесь!

Но было поздно — булавка впилась в палец.3

Кэрролл (не родственник4) играет на основополагающей характеристике времени — том факте, что причина всегда предшествует следствию. Описанная сценка заставляет нас улыбнуться, но в то же время служит напоминанием о том, какую важную роль стрела времени играет в формировании мироощущения.

Текущее вспять время может создавать не только комедийную картину, но и весьма трагичную. Роман Мартина Эмиса «Стрела времени» — классический пример описания жизни «в обратную сторону», даже с учетом того, что ассортимент произведений в данном стиле невелик.5 Повествование идет от имени бестелесного создания, живущего внутри другого человека, Одило Унфердорбена. Хозяин тела проживает жизнь в привычном нам понимании — вперед во времени, однако для фантомного повествователя время течет в обратную сторону. Его первое воспоминание связано со смертью Унфердорбена. У него нет никакой власти над Унфердорбеном, и он не в состоянии контролировать его действия или обращаться к его воспоминаниям. Он всего лишь пассивно проживает жизнь в обратном порядке. В начале романа Унфердорбен предстает перед нами в роли врача, и на рассказчика его работа оказывает самое отталкивающее впечатление: пациенты забредают в пункт первой помощи, где сотрудники высасывают лекарства из их тел, срывают бинты и отправляют несчастных людей в ночь истекающими кровью и кричащими от боли. Однако ближе к концу книги мы узнаем, что Унфердорбен был ассистентом врача в Освенциме и занимался тем, что создавал жизнь из ничего, превращая химические вещества, электричество и мертвые тела в живых людей. Только теперь, думает рассказчик, все наконец-то встает на свои места.

Стрела времени

Существует веская причина, почему изменение относительного направления движения времени на обратное — такой эффективный художественный инструмент: в реальном, не воображаемом мире подобное, в принципе, невозможно. У времени есть направление, и направление времени одинаково для всех. Никому из нас не доводилось встречаться с персонажами, подобными Белой Королеве, которые помнят о том, что мы воспринимаем как «будущее», в противоположность (или в дополнение) к «прошлому».

Однако что же мы в действительности имеем в виду, когда говорим, что у времени есть направление, что стрела времени указывает из прошлого в будущее? Представьте себе воспроизведение фильма в обратную сторону. В целом довольно быстро становится понятно, что предстающее перед нами зрелище движется «не в ту сторону». Возьмем классический пример: ныряльщик в бассейне. Если после того, как человек нырнул, мы видим столб брызг и волны, расходящиеся по воде, значит, все нормально. Но если мы видим, что в бассейне внезапно появляются волны, а потом столб брызг выталкивает ныряльщика из толщи воды на трамплин, после чего волны сразу же успокаиваются, то нам становится понятно: видеозапись воспроизводится задом наперед.

Определенные события в реальном мире всегда происходят в одном и том же порядке. Порядок неизменен: нырок — всплеск — волны. Никогда мы не наблюдаем обратного процесса: волны — всплеск — выталкивание ныряльщика в воздух. Мы можем взять молоко и добавить его в чашку черного кофе; но невозможно взять кофе с молоком и разделить две жидкости. Подобные последовательности действий называются необратимыми процессами. Нам никто не мешает фантазировать о том, как такие процессы выглядели бы, поверни мы их вспять, но если нам вдруг действительно приведется увидеть что-то подобное, мы сразу же заподозрим в них кинематографические трюки и точно не воспримем их как достоверное отражение реальности.

Необратимые процессы — это самая суть стрелы времени. Одни последовательности событий возможны, другие нет. Важно также, что порядок событий — насколько мы можем судить об этом — един во всей наблюдаемой Вселенной. Возможно, когда-нибудь в какой-нибудь далекой солнечной системе мы найдем планету, населенную разумными существами, но мы не ожидаем, что для них будет обычным делом взять и разделить молоко и кофе (или их туземные аналоги) несколькими небрежными взмахами ложкой. Почему это нас не удивляет? Вселенная огромна; почему бы событиям не происходить в разных ее частях в разных последовательностях? Однако это невозможно. Для определенных типов процессов — грубо говоря, сложных действий, включающих множество индивидуальных движущихся частей, — существует некий допустимый порядок, каким-то образом встроенный в саму ткань бытия.

Стрела времени — центральная формирующая метафора пьесы Тома Стоппарда «Аркадия». Вот как Томасина, юное дарование, намного опередившее свое время, объясняет это понятие своему учителю:

Т о м а с и н а. Септимус, представь, ты кладешь в рисовый пудинг ложку варенья и размешиваешь. Получаются такие розовые спирали, как след от метеора в атласе по астрономии. Но если помешать в обратном направлении, снова в варенье они не превратятся. Пудингу совершенно все равно, в какую сторону ты крутишь, он розовеет и розовеет — как ни в чем не бывало. Правда, странно?

С е п т и м у с. Ничуть.

Т о м а с и н а. А по-моему, странно. РАЗмешать не значит РАЗделить. Наоборот, все смешивается.

С е п т и м у с. Так же и время — вспять его не повернуть. А коли так — надо двигаться вперед и вперед, смешивать и смешиваться, превращая старый хаос в новый, снова и снова, и так без конца. Чтобы пудинг стал абсолютно, неоспоримо и безвозвратно розовым. Вот и весь сказ. Это называют свободой воли или самоопределением.6

Таким образом, стрела времени в нашей Вселенной существует, и от этого никуда не деться. Возможно даже, что это основополагающая характеристика нашей Вселенной; тот факт, что вещи случаются в таком порядке, как мы привыкли их видеть, но не в обратном, неразрывно связан с тем, как мы привыкли жить в нашем мире. И все же, почему так? Почему мы живем во Вселенной, где X часто случается после Y, но Y никогда не происходит вслед за X?

Ответ лежит в концепции «энтропии», о которой я упоминал выше. Так же как энергия и температура, энтропия сообщает нам что-то о текущем состоянии физической системы, и в частности позволяет оценить, насколько система беспорядочна. У пачки аккуратно сложенных один на другой листов бумаги низкая энтропия; у той же пачки бумаги, хаотично разбросанной по столу, энтропия высокая. Энтропия чашки кофе, рядом с которой мы держим ложку молока, низкая, так как в данной системе существует четкое упорядоченное разделение молекул на «молоко» и «кофе». После смешивания энтропия этих двух жидкостей становится относительно высокой. Все необратимые процессы, позволяющие говорить о существовании стрелы времени, — мы можем превратить яйца в омлет, но невозможно собрать омлет обратно в яйца; духи распыляются по помещению, но не втягиваются обратно во флакон; кубики льда тают в воде, но в чашках с теплой водой не происходит спонтанного формирования кубиков льда, — обладают одним общим свойством: энтропия в них увеличивается, то есть система переходит из упорядоченного состояния в беспорядочное. Всякий раз, когда мы осмеливаемся побеспокоить Вселенную, мы увеличиваем ее энтропию.

Одной из основных задач этой книги является объяснение, как такое понятие, как энтропия, связывает в единое целое такой разнородный набор явлений. После этого мы углубимся в выяснение того, что же такое эта самая «энтропия» и почему она непрерывно увеличивается. Наша конечная цель — задать себе фундаментальный вопрос, стоящий перед современной физикой: почему в прошлом энтропия была так низка, что способна с тех пор постоянно увеличиваться?

Будущее и прошлое как верх и низ

Однако в первую очередь нам следует поразмышлять над более глобальным вопросом: действительно ли стоит удивляться тому, что определенные вещи происходят во времени в одном направлении, но не в противоположном? Кто вообще сказал, что порядок следования событий должен быть неизменным?

Давайте думать о времени как о некоторой метке, отмечающей события по мере того, как они происходят. В этом отношении время подобно пространству — они оба помогают нам находить вещи во Вселенной. Но между временем и пространством существует коренное различие: по своей природе все направления в пространстве равноправны, тогда как направления во времени (а именно «прошлое» и «будущее») совершенно непохожи. Здесь, на Земле, очень просто определять направления в пространстве: компас подсказывает, движемся мы на север, на юг, на восток или на запад, и ни у кого не возникает проблем с тем, чтобы сказать, где находится верх, а где низ. Но это не отражение каких-то глубоких базовых законов природы — все дело в том, что мы живем на гигантской планете и определяем различные направления относительно нее. Если бы вы парили в скафандре где-то в открытом космосе, вдалеке от любых планет, то все направления в пространстве были бы неразличимы: не было бы предпочтительных направлений «вверх» и «вниз».

Технически это означает, что законы природы характеризуются симметрией: все направления в пространстве абсолютно равноценны. «Перевернуть направление» в пространстве достаточно просто — сделайте фотографию и напечатайте снимок в зеркальном отражении или же просто-напросто посмотритесь в зеркало. Чаще всего отражение оказывается совершенно непримечательным. Сразу же напрашивается контрпример — письменный текст; в этом случае очень легко определить, смотрим мы на нормальное или на перевернутое изображение. Но для письма, как и для Земли, существует предпочтительное направление (вы читаете строчки в этой книге слева направо). Однако изображения большинства сцен, в которых отсутствуют человеческие творения, выглядят одинаково «естественно» как в исходном представлении, так и в зеркальном отражении.

Попробуем сравнить это со свойствами времени. Эквивалентом зеркального отражения картинки (изменения направления в пространстве на обратное) является «воспроизведение фильма задом наперед» (изменение направления времени на обратное). Во втором случае легко догадаться, что направление времени изменено: необратимые процессы, определяющие стрелу времени, происходят в другую сторону. Каково же происхождение этого коренного различия между пространством и временем? Хотя наличие Земли у нас под ногами определяет «стрелу пространства», указывая на «верх» и «низ», очевидно, что это локальное, ограниченное явление, а не отражение фундаментальных законов природы. Мы можем вообразить себя в космосе, где нет предпочтительных направлений. Однако фундаментальные законы природы не определяют предпочтительное направление и во времени тоже — в этом смысле оно ничем не отличается от пространства. Если мы ограничим наше рассмотрение очень простыми системами всего с несколькими движущимися частями, движение которых отражает базовые законы физики, а не наши запутанные локальные условия, то стрела времени исчезнет: мы не сможем сказать, воспроизводится фильм обычным способом или же его крутят задом наперед. Вспомните люстру Галилео, спокойно покачивающуюся вперед и назад. Если бы вам показали съемку этой люстры, то вы не смогли бы определить, в какую сторону прокручивается кинопленка — движение люстры настолько простое, что совершенно одинаково выглядит в обоих направлениях во времени.

Рис. 2.1. Земля определяет предпочтительное направление в пространстве, а Большой взрыв определяет предпочтительное направление во времени

Таким образом, по крайней мере насколько мы можем об этом судить, существование стрелы времени нельзя считать свойством фундаментальных законов физики. Скорее, аналогично ориентации вверх — вниз в пространстве, определяемой Землей, предпочтительное направление времени также иллюстрирует характеристики нашего окружения. Если речь идет о времени, то мы говорим не о пространственной близости к какому-то влиятельному объекту — нет, в этом случае важнейшую роль играет временнáя близость к влиятельному событию: зарождению Вселенной. Источник нашей обозримой Вселенной — горячее и плотное состояние, известное под названием Большой взрыв, — обладал крайне низкой энтропией. Влияние этого события ориентирует нас во времени, точно так же, как присутствие Земли ориентирует нас в пространстве.

Самый надежный закон природы

Принцип, определяющий существование необратимых процессов, сформулирован во втором начале термодинамики:
Энтропия изолированной системы либо остается постоянной, либо со временем увеличивается.

(Первое начало утверждает, что полная энергия остается постоянной.7) Многие считают второе начало самым надежным среди всех открытых человечеством физических законов. Если бы вас попросили спрогнозировать, какой из принятых в настоящее время физических принципов останется в силе и через тысячу лет, то вы с уверенностью могли бы поставить на второе начало термодинамики. Сэр Артур Эддингтон, ведущий астрофизик начала XX века, высказался об этом довольно категорично:

Если кто-то скажет, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла (законами, описывающими электричество и магнетизм), — тем хуже для уравнений Максвелла. Если обнаружится, что ее опровергают наблюдаемые явления, — ну что тут скажешь, эти экспериментаторы нередко запарывают свою работу. Но если ваша теория противоречит второму началу термодинамики, я не думаю, что у нее есть хоть какие-то шансы; ей остается лишь исчезнуть, потерпев унизительное поражение.8

Чарльз Перси Сноу, британский интеллектуал, физик и романист, вероятно, наиболее известен благодаря широкой пропаганде собственного убеждения, что «две культуры» естественных и гуманитарных наук отдалились друг от друга, но обе они должны быть частями нашего общего цивилизованного мира. Когда его спросили, какой основополагающий научный факт должен быть известен любому образованному человеку, он тоже выбрал второе начало термодинамики:

Множество раз мне приходилось бывать в обществе людей, которые по нормам традиционной культуры считаются высокообразованными. Обычно они с большим пылом возмущаются литературной безграмотностью ученых. Как-то раз я не выдержал и спросил, кто из них может объяснить, что такое второе начало термодинамики. Ответом было молчание или отказ. А ведь задать этот вопрос ученому значит примерно то же самое, что спросить у писателя: «Читали ли вы Шекспира?»9

Уверен, барон Сноу пользовался успехом на коктейльных вечеринках в Кембридже. (Справедливости ради замечу, что позднее он сам признался в том, что даже физики не до конца понимают второе начало термодинамики.)

Наше современное определение энтропии было предложено австрийским физиком Людвигом Больцманом в 1877 году. Однако понятие энтропии и ее использование во втором начале термодинамики отсылает нас к немецкому физику Рудольфу Клаузиусу в 1865 год. А само второе начало было сформулировано еще раньше — французским военным инженером Николя Леонаром Сади Карно в 1824 году. Но как Клаузиус умудрился использовать энтропию во втором начале, не зная определения, и как Карно сумел сформулировать второе начало, вообще не используя понятие энтропии?

Девятнадцатый век был выдающейся эпохой в истории развития термодинамики — учении о теплоте и ее свойствах. Пионеры термодинамики изучали взаимодействие температуры, давления, объема и энергии между собой. Их интерес ни в коем случае не был абстрактным — дело происходило при зарождении промышленной эры, и в немалой степени этих ученых вдохновляло желание построить лучшие паровые двигатели.

Сегодня ученые понимают, что теплота — это форма энергии и что температура объекта представляет собой всего лишь меру средней кинетической энергии (энергии движения) атомов объекта. Однако в XIX веке ученые не верили в атомы, и они не очень хорошо понимали, что такое энергия. Карно, чью гордость ранил тот факт, что технология паровых двигателей англичан намного превосходила то, что могли предложить французы, поставил себе целью понять, насколько эффективным может быть такой двигатель: сколько полезной работы он может произвести, сжигая определенный объем топлива. Он доказал, что у этой эффективности есть фундаментальный предел. Сделав интеллектуальный скачок от реальных машин к идеализированным «паровым двигателям», Карно продемонстрировал, что существует наилучший двигатель, умеющий производить больше всего работы на определенном количестве топлива, функционируя при определенной температуре. Его главной идеей, что неудивительно, стала минимизация потерь тепла. Для нас тепло полезно, оно обогревает наши дома в холодную зиму, однако оно не помогает выполнять то, что физики называют «работой», — перемещать что-нибудь вроде клапана или маховика с место на место. Карно понял, что даже самый эффективный из реально возможных двигателей все равно не будет идеальным; какое-то количество энергии будет теряться во время работы. Другими словами, работа парового двигателя — это необратимый процесс.

Таким образом, Карно осознал, что двигатели совершали что-то, что невозможно было отменить. И уже Клаузиус в 1850 году понял, что данный факт отражает закон природы. Он сформулировал свой закон так: «Теплота не может спонтанно начать течь от холодных тел к теплым». Наполните воздушный шар горячей водой и погрузите его в холодную воду. Каждый знает, что температуры начнут выравниваться: вода в воздушном шаре будет остывать, а вода в емкости, куда его погрузили, станет нагреваться. Противоположный процесс невозможен. Физическая система стремится к достижению равновесия — состоянию покоя, которое максимально однородно, а температуры всех его составляющих одинаковы. Благодаря этой догадке Клаузиус сумел заново получить те же результаты Карно для паровых двигателей.

Так каким же образом закон Клаузиуса (теплота не течет спонтанно от холодных тел к горячим) связан со вторым началом термодинамики (энтропия не уменьшается спонтанно)? Ответ прост: это один и тот же закон. В 1865 году Клаузиус переформулировал свой исходный принцип, используя новую величину, которой он дал название «энтропия». Рассмотрим постепенно остывающий объект, то есть объект, передающий тепло в окружающую среду. В каждый момент этого процесса возьмем количество потерянной теплоты и разделим на температуру объекта. Энтропия — это накопленное значение этой величины (количества теплоты, поделенного на температуру тела) за весь период действия процесса. Клаузиус доказал, что стремление теплоты покидать горячие объекты и перетекать к холодным в точности эквивалентно заявлению о том, что энтропия замкнутой системы может только увеличиваться и никогда не уменьшается. Состояние равновесия — это всего лишь такое состояние, в котором энтропия достигла максимального значения и ей некуда больше деваться; у всех соприкасающихся объектов одинаковая температура.

Если предыдущее объяснение вам кажется несколько абстрактным, то энтропию можно описать и гораздо более простыми словами: энтропия измеряет бесполезность определенного количества энергии.10 У галлона бензина есть энергия, и она полезна, — мы можем заставить ее работать. Процесс сжигания бензина для обеспечения работы двигателя не меняет полную энергию; если тщательно отслеживать все происходящее, то будет понятно, что энергия остается постоянной.11 Однако с течением времени эта энергия становится все более бесполезной. Она превращается в теплоту и шум, а также в движение транспортного средства, на котором установлен двигатель, и даже это движение в конечном счете замедляется из-за трения. Пока энергия превращается из полезной в бесполезную, энтропия увеличивается.

Второе начало термодинамики не подразумевает, что энтропия системы никогда не может уменьшаться. Например, мы могли бы изобрести машину, которая отделяла бы молоко от кофе. Но хитрость в том, что уменьшить энтропию одной вещи можно, лишь увеличив энтропию вокруг нее. У нас, людей, и у машин, которые мы могли бы применять для разделения молока и кофе, у еды и топлива, которые мы потребляем, — у всего этого есть энтропия, которая неизменно будет увеличиваться. Физики проводят различие между открытыми системами — объектами, которые взаимодействуют с внешним миром, обмениваясь энтропией и энергией, — и замкнутыми системами — объектами, которые, по сути, изолированы от внешнего влияния. В открытой системе, такой как кофе с молоком, которые мы помещаем в нашу машину, энтропия, несомненно, может уменьшиться. Однако в замкнутой системе, скажем, включающей кофе с молоком, а также машину, оператора машины, топливо и т. д., — энтропия всегда будет увеличиваться или, в крайнем случае, оставаться постоянной.

Возвышение атомов

Великолепные догадки Карно, Клаузиуса и их коллег о сути термодинамических явлений лежат все же в области «феноменологических» размышлений. Эти ученые видели общую картину, но не понимали механизмов, которыми она управляется. В частности, они не знали о существовании атомов, поэтому не могли рассматривать температуру, энергию и энтропию как свойства микроскопической среды; они мыслили о них как о реальных объектах, которые существуют сами по себе. В те дни, в частности, довольно распространено было представление об энергии как о некой жидкости, умеющей перетекать из одного тела в другое. У этой «энергии-жидкости» даже было свое название: «теплород». И такого уровня понимания было совершенно достаточно для формулировки законов термодинамики.

Однако в ходе XIX века физики постепенно убеждались, что многие виды материи, с которыми мы имеем дело в реальном мире, можно рассматривать как различные конфигурации фиксированного числа одних и тех же элементарных составляющих — атомов (на самом деле в вопросе принятия атомной теории физиков в то время опережали химики). Это не новая идея, о ней упоминал еще Демокрит и другие мыслители античной Греции, но именно в XIX веке она завоевала популярность и начала развиваться по одной простой причине: только существование атомов могло объяснить многие наблюдаемые свойства химических реакций, которые до этого приходилось принимать как данность. Ученым нравится, когда одна простая идея способна объяснить широкий диапазон наблюдаемых явлений.

Сегодня роль демокритовых атомов играют элементарные частицы, такие как кварки и лептоны, однако идея остается неизменной. То, что современный ученый называет атомом, — это самая маленькая частица материи, которая может выступать как отдельный химический элемент, такой как углерод или азот. Но теперь мы понимаем, что атомы — не неделимые частицы; они состоят из электронов, вращающихся вокруг атомного ядра, а ядро состоит из протонов и нейтронов, которые, в свою очередь, представляют собой различные комбинации кварков. Поиск правил, которым подчиняются эти элементарные строительные кирпичики материи, часто называют «фундаментальной» физикой, хотя более точным (и менее напыщенным) было бы название «элементарная» физика. Впредь я буду использовать термин «атом» в установившемся в XIX веке смысле — как определение химического элемента, а не согласно существовавшему в Древней Греции пониманию об элементарных частицах.

Фундаментальные законы физики обладают одной потрясающей особенностью: несмотря на то что они управляют поведением всей материи во Вселенной, вам не нужно знать их для того, чтобы жить обычной жизнью и справляться с повседневными задачами. Более того, вам было бы чрезвычайно затруднительно обнаружить их всего лишь на основе непосредственного опыта. Так происходит потому, что очень большие наборы частиц подчиняются отдельным, независимым правилам поведения, не привязанным к мелкомасштабным структурам, образующим окружающие нас объекты. Глубинные правила, действующие на эти структуры, называют микроскопическими, или просто фундаментальными, тогда как специальные правила, применимые только к большим системам, — это макроскопические, или эмергентные, правила. Без сомнения, поведение температуры, тепла и т. д. поддается описанию в терминах атомов; это предмет изучения особой дисциплины, называемой статистической механикой. Однако точно так же можно разобраться в поведении этих явлений, не зная об атомах абсолютно ничего. Именно этот феноменологический подход, называемый термодинамикой, мы обсуждаем в этой главе. В физике очень часто случается так, что в сложных макроскопических системах возникают динамические закономерности, являющиеся следствием из микроскопических правил. Несмотря на то что зачастую об этом говорят совсем иначе, никакой конкуренции между фундаментальной физикой и изучением эмергентных явлений нет; это две захватывающие области науки, и развитие обеих принципиально важно для понимания того, как устроен мир вокруг нас.

Одним из первых физиков, поддержавших атомную теорию, был шотландец Джеймс Клерк Максвелл, которому мы также должны быть благодарны за окончательную формулировку современной теории электричества и магнетизма. Максвелл совместно с Больцманом в Австрии (и продолжая работу многих других ученых) использовал идею атомов для объяснения поведения газов в рамках того, что было в то время известно под названием кинетической теории. Максвеллу и Больцману удалось установить, что атомы газа, заключенного в контейнер и содержащегося при определенной температуре, характеризуются определенным распределением скоростей: столько-то атомов двигаются быстро, столько-то медленно и т. д. Конечно же, эти атомы ударяются о стенки контейнера, каждый раз оказывая на нее крошечное воздействие. У суммарного влияния этих крошечных сил есть название: это всего-навсего давление газа. Таким образом, кинетическая теория объяснила свойства газов с помощью более простых правил.

Энтропия и беспорядок

Величайшим триумфом кинетической теории стало ее применение Больцманом для толкования энтропии на микроскопическом уровне. Больцман заметил, что при рассмотрении какой-то макроскопической системы мы не обращаем особого внимания на конкретные свойства каждого отдельного атома. Предположим, перед нами стоит стакан с водой, и кто-то украдкой заменяет несколько молекул воды, не изменяя при этом общие температуру, плотность и другие свойства системы. В таком случае мы не заметим подмены. Множество различных конфигураций атомов неразличимы с нашей, макроскопической точки зрения. Однако также Больцман обратил внимание на то, что объекты с низкой энтропией намного более чувствительны к изменению этих конфигураций. Если вы возьмете яйцо и начнете менять местами кусочки желтка и белка, то очень скоро изменения станут заметны. Системы, обладающие низкой энтропией, гораздо проще изменить путем перестановки атомов, в то время как системы с высокой энтропией устойчивы к подобным воздействиям.

Таким образом, Больцман взял понятие энтропии, которую Клаузиус и другие называли мерилом бесполезности энергии, и переформулировал ее в терминах атомов:

Энтропия — это мера количества индивидуальных микроскопических расстановок атомов, которые для макроскопического наблюдателя неразличимы.12

Рис. 2.2. Памятник на могиле Людвига Больцмана на центральном кладбище Вены. Высеченное на могильном камне уравнение13: \( S = k \log W \) — это формула Больцмана, связывающая энтропию с количеством перестановок микроскопических частей системы, которые можно совершить без изменения ее макроскопического состояния (подробнее об этом — в главе 8)

Трудно переоценить важность этой догадки. До Больцмана энтропию рассматривали как феноменологическую термодинамическую величину, которая живет по собственным правилам (например, подчиняется второму началу термодинамики). Благодаря Больцману стало возможно вывести свойства энтропии из более глубоких базовых принципов. В частности, внезапно становится совершенно ясно, почему энтропия увеличивается:

Энтропия изолированной системы увеличивается, потому что существует гораздо больше способов создать высокую энтропию, чем низкую.

По крайней мере, эта формулировка сразу расставляет все по местам. Тем не менее она основана на принципиально важном допущении о том, что вначале у системы энтропия низкая. Если мы возьмем в качестве примера систему с высокой энтропией, то она будет находиться в равновесии — в ней вообще ничего не будет происходить. Слово «вначале» подразумевает асимметрию направлений времени, давая прошлому преимущество перед будущим. Эта цепочка рассуждений отсылает нас в самое начало времен, к низкой энтропии Большого взрыва. По какой-то причине из великого множества способов скомпоновать все составляющие Вселенной в самом начале был выбран только один — Вселенная находилась в особой, исключительной конфигурации с низкой энтропией.

Если отбросить эту оговорку, то не остается сомнений в том, что определение понятия энтропии, предложенное Больцманом, стало огромным скачком вперед в понимании стрелы времени. Однако и у этого скачка была своя цена. До открытий Больцмана второе начало термодинамики не вызывало сомнений — это был безусловный закон природы. Но у определения энтропии в терминах атомов есть важное следствие: энтропия не обязательно возрастает даже в замкнутой системе; она всего лишь с большой вероятностью будет увеличиваться (даже с подавляющей вероятностью, как мы видим, но все же). Предположим, у нас есть контейнер с газом, равномерно распределенным по нему и имеющим состояние с высокой энтропией. Если мы подождем достаточно долго, хаотичное движение атомов в конечном итоге приведет к тому, что все они — всего лишь на мгновение — окажутся вплотную к одной из стенок контейнера. Это называется статистической флуктуацией. Однако если вплотную заняться цифрами, то подсчеты покажут, что время, в течение которого имеет смысл ожидать такого статистического колебания, намного превышает возраст Вселенной. На практике мы вряд ли когда-нибудь застанем подобное событие. Тем не менее оно вероятно.

Некоторым людям это не нравилось. Они хотели, чтобы второе начало термодинамики было совершенно и абсолютно нерушимым, им претил тот факт, что это всего лишь утверждение, которое «истинно большую часть времени». Предположение Больцмана повлекло за собой массу споров и разногласий, однако в наши дни оно общепризнано.

Энтропия и жизнь

Все это очень увлекательно, по крайней мере для физиков. Однако следствия этих идей выходят далеко за пределы паровых двигателей и чашек кофе. Стрела времени заявляет о своем существовании самыми разными способами: наши тела с возрастом меняются, мы помним прошлое, а не будущее, следствие всегда появляется после причины. Оказывается, все эти явления можно отнести на счет второго начала термодинамики. Энтропия в буквальном смысле обеспечивает возможность существования жизни.

Основной источник энергии для жизни на Земле — это солнечный свет. Как объяснил нам Клаузиус, теплота естественным образом переносится от горячего объекта (Солнца) к более холодному (Земле). Однако если бы этим все и заканчивалось, то довольно скоро два объекта пришли бы в состояние равновесия друг относительно друга — достигли бы одинаковой температуры. В действительности так бы и произошло, если бы Солнце занимало все небо, а не было бы для нас небольшим диском с угловым диаметром около одного градуса. Да, в этом случае мы бы увидели очень грустный мир. Он был бы абсолютно непригоден для существования жизни — и не только из-за чрезвычайно высокой температуры, а потому что этот мир был бы статичным. Ничто никогда не менялось бы в мире, достигшем равновесия.

В реальной Вселенной наша планета не нагревается до температуры Солнца, потому что Земля непрерывно теряет тепло, излучая его в окружающее космическое пространство. При этом единственная причина, почему это возможно, как не преминул бы отметить Клаузиус, заключается в том, что космическое пространство намного холоднее Земли.14 Таким образом, именно благодаря тому, что Солнце — это всего лишь горячее пятно на холодном небе, Земля не нагревается без перерыва, а вместо этого впитывает энергию Солнца, преобразует ее и излучает в космос. В ходе этого процесса, разумеется, энтропия увеличивается; у фиксированного объема энергии в форме солнечного излучения энтропия намного меньше, чем у того же объема энергии в форме излучения Земли.

Этот процесс, в свою очередь, объясняет, почему биосфера Земли — далеко не статичное место.15 Мы получаем энергию от Солнца, но это не означает, что она нагревает и нагревает нас, пока мы не достигнем равновесия; солнечная энергия — это излучение с очень низкой энтропией, поэтому мы можем использовать ее для своих нужд, а затем высвобождать, уже в форме излучения с высокой энтропией. Все это возможно исключительно потому, что у Вселенной в целом и у Солнечной системы в частности в настоящее время относительно низкая энтропия (а раньше она была еще ниже). Если бы Вселенная была близка к температурному равновесию, в ней не происходили бы никакие процессы.

Ничто хорошее не вечно. Наша Вселенная является таким оживленным местом как раз потому, что энтропии есть куда увеличиваться — до тех пор, пока не будет достигнуто состояние равновесия, в котором все застопорится. Однако и это нельзя считать неизбежным. Возможно, энтропия Вселенной будет возрастать бесконечно. Или, наоборот, в какой-то момент энтропия достигнет максимального значения и остановится. Последний сценарий известен под названием тепловой смерти Вселенной, и предположение о таком конце возникло достаточно давно, в 1850-х годах, наряду с другими поразительными открытиями в термодинамике. Например, Уильям Томсон, лорд Кельвин — британский физик и инженер, сыгравший важную роль в прокладке первого трансатлантического телеграфного кабеля, в моменты рефлексии размышлял о будущем Вселенной:

Если бы Вселенная была конечной и обязана была подчиняться существующим законам, результатом неизбежно стало бы состояние всеобщего успокоения и смерти. Однако невозможно вообразить пределы распространения материи во Вселенной, и в силу этого наука свидетельствует о бесконечном продолжении в бесконечном пространстве процесса трансформации потенциальной энергии в осязаемое движение и, следовательно, в теплоту, но не о существовании одного ограниченного механизма, работающего по инерции, как часы, и останавливающегося навечно.16

Здесь лорд Кельвин, можно сказать, предвосхитил будущее, указав на центральный вопрос всех дискуссий подобного рода, к которому мы также будем возвращаться на протяжении всей книги: способность Вселенной расширяться — конечна или бесконечна? Если конечна, то однажды, когда вся полезная энергия будет преобразована в бесполезные формы энергии, обладающие высокой энтропией, Вселенную ждет тепловая смерть. Но если энтропия может увеличиваться бесконечно, мы можем, по крайней мере, предположить возможность бесконечного роста и развития Вселенной в том или ином виде.

В своем знаменитом рассказе «Энтропия» Томас Пинчон заставил своих героев применить уроки термодинамики к социальному окружению.

— Тем не менее, — продолжал Каллисто, — он обнаружил в энтропии, то есть в степени беспорядка, характеризующей замкнутую систему, подходящую метафору для некоторых явлений его собственного мира. Он увидел, например, что молодое поколение взирает на Мэдисон-авеню с той же тоской, какую некогда его собственное приберегало для Уолл-стрит; и в американском «обществе потребления» он обнаружил тенденции ко все тем же изменениям: от наименее вероятного состояния к наиболее вероятному, от дифференциализации к однообразию, от упорядоченной индивидуальности к подобию хаоса. Короче говоря, он обнаружил, что переформулирует предсказания Гиббса в социальных терминах и предвидит тепловую смерть собственной культуры, когда идеи, подобно тепловой энергии, не смогут уже больше передаваться, поскольку энергия всех точек системы в конце концов выровняется, и интеллектуальное движение, таким образом, прекратится навсегда.17

До сих пор ученым не удалось подтвердить правоту ни одной из существующих точек зрения; будет ли Вселенная расширяться вечно или однажды она все же успокоится в безмятежном состоянии равновесия — сказать невозможно.

Почему мы не помним будущее?

Итак, стрела времени описывает не только простые механические процессы; это неотъемлемое свойство самой жизни. Кроме того, от стрелы времени зависит важнейшее качество сознания человека — тот факт, что мы помним прошлое, но не будущее. Согласно фундаментальным законам физики, прошлое и будущее абсолютно равнозначны, однако с точки зрения обычного человека, смотрящего на жизнь обычным взглядом, более непохожих вещей не найти. Образы прошлого хранятся у нас в голове в форме воспоминаний. Что же касается будущего, мы можем лишь что-то прогнозировать, однако никакие прогнозы не могут быть настолько же достоверными, как воспоминания о прошлом.

В конечном счете причина, почему у нас в голове формируется надежная память о прошлом, заключается в том, что в прошлом энтропия была ниже. В сложной системе, такой как Вселенная, базовые компоненты могут сложиться в несметное множество конфигураций вида «вы, с определенными воспоминаниями о прошлом, плюс вся остальная Вселенная». Если все, что вам известно, — это то, что вы существуете прямо сейчас и что у вас есть воспоминание о походе на пляж летом между шестым и седьмым классами, то у вас просто-напросто недостаточно информации, чтобы сделать достоверное заключение о том, что тем летом вы действительно ходили на пляж. Гораздо более вероятно, что ваше воспоминание об этом — всего лишь случайная флуктуация, как комната, в которой весь воздух скопился у одной стены. Для того чтобы воспоминания имели смысл, необходимо предположить, что Вселенная также была упорядочена определенным образом — что энтропия была ниже в прошлом.

Представьте, что вы идете по улице и замечаете на тротуаре разбитое яйцо. По виду растекшегося содержимого понятно, что яйцо лежит здесь совсем недолго. Предположение о том, что раньше энтропия была ниже, позволяет нам с уверенностью заявить, что буквально несколько минут назад яйцо было целым, но кто-то уронил его и разбил. Если говорить о будущем, то у нас нет никаких причин предполагать, что энтропия будет уменьшаться, и, таким образом, мы не можем предсказать судьбу этого яйца — слишком уж много вариантов развития событий. Возможно, оно останется на асфальте и покроется плесенью, возможно, кто-то смоет его с тротуара, а может быть, пробежит собака и съест его (маловероятно, что оно вдруг спонтанно пересоберется обратно в неразбитое яйцо, но, строго говоря, и такой исход тоже вероятен). Яйцо на тротуаре — как воспоминание в вашем мозге; это летопись события, случившегося ранее, но лишь в предположении, что и энтропия тогда была ниже.

Успешно отделять прошлое от будущего нам также позволяет связь «причина — следствие». В частности, причины случаются первыми (раньше по времени), а следствия происходят вслед за ними. Именно поэтому Белая Королева кажется нам такой нелепой дамой: как она может кричать от боли еще до того, как уколет палец? И снова виной всему энтропия. Представьте себе ныряльщика, прыгающего в бассейн, — всплеск воды всегда следует за прыжком. Согласно микроскопическим законам физики, можно перегруппировать молекулы воды (а также окружающего воздуха, в котором распространяется звук) таким образом, чтобы произошел «антивсплеск» и вода вытолкнула бы ныряльщика из бассейна. Точность выбора позиции и скорости каждого отдельного атома при этом должна быть невообразимо высокой: если выбрать случайную конфигурацию всплеска, то вероятность того, что микроскопические силы при этом объединятся правильным образом и вытолкнут ныряльщика, будет близка к нулю.

Другими словами, одно из различий между «следствиями» и «причинами» — то, что «следствия» обычно подразумевают увеличение энтропии. Если два бильярдных шара столкнутся и раскатятся в разные стороны, энтропия не изменится и мы не сможем указать ни на один из шаров как на явную причину взаимодействия. Однако если в начале игры вы ударите кием по битку, чтобы разбить пирамиду (и тем самым вызвать заметное увеличение энтропии), то смело сможете сказать, что именно биток заставил шары раскатиться, несмотря на то что перед законами физики все шары равны.

Искусство возможного

В предыдущей главе мы сравнивали блочное представление о времени, в котором вся четырехмерная история мира, прошлое, настоящее и будущее одинаково реальны, с точкой зрения презентистов, что только текущий момент по-настоящему реален. Однако существует еще одна концепция, которую иногда называют поссибилизмом: текущий момент существует, и прошлое существует, но будущее (еще) не существует.

Идея о том, что прошлое существует — в противоположность несуществующему будущему, великолепно согласуется с нашим неформальным пониманием того, что такое время и как оно работает. Прошлое уже произошло, в то время как будущее нам еще предстоит испытать: мы можем прикинуть возможные варианты будущих событий, но не знаем, какой в итоге окажется реальность. Конкретнее, когда мы говорим о прошлом, у нас есть возможность обратиться к собственным воспоминаниям или записям, описывающим прошедшие события. Какие-то записи будут более надежными, какие-то менее, но в целом они фиксируют реальность прошлого в форме, которая для будущего попросту недоступна.

Попробуйте вообразить такую картинку: ваш супруг или супруга говорит: «Давай поменяем планы на отпуск в следующем году? Вместо того чтобы лететь в Канкун, давай бросим все и рванем в Рио!» Вы можете согласиться или не согласиться с этим предложением, но если вы все же решите поменять планы, то стратегия реализации этого решения будет очень простой: вы забронируете новые авиабилеты, закажете номер в другом отеле и т. д. Но если вы услышите: «Давай поменяем планы на отпуск в прошлом году! Как будто мы не ездили в Париж, а бросили все и рванули в Стамбул»? В этом случае ваша стратегия будет совершенно иной: вы подумаете о том, как аккуратно намекнуть на необходимость похода к врачу, а не о том, как изменить уже реализованные отпускные планы. Прошлое прошло, оно осталось в летописях, и не в наших силах изменить его. Таким образом, совершенно логично относиться к прошлому и будущему по-разному. Философы говорят о различии между Бытием — существованием в мире — и Становлением — динамическом процессе изменения, привносящем реальность в существование.

Нигде в известных нам физических законах вы не найдете упоминаний о том, что прошлое и будущее — разные вещи, что прошлое фиксировано, а будущее пластично. Глубинные микроскопические правила природы абсолютно одинаково работают вперед и назад во времени, в какой бы ситуации мы их ни применили. Если вам известно точное состояние Вселенной и все законы физики, то будущее, так же как и прошлое, для вас предрешено строже, чем в самых смелых снах Жана Кальвина о безусловном предопределении.

Попытки увязать между собой всевозможные убеждения, — что прошлое фиксировано и неизменно, будущее может меняться, а фундаментальные законы физики обратимы, — неизменно возвращают нас к понятию энтропии. Если бы мы знали точное состояние каждой частицы во Вселенной, мы могли бы с успехом как предсказывать будущее, так и узнавать прошлое. Однако это нам недоступно; мы располагаем лишь знаниями о некоторых макроскопических характеристиках Вселенной да крохами подробностей о частных состояниях. Обладая такой информацией, мы в состоянии предсказать лишь определенные широкомасштабные явления (солнце завтра взойдет), хотя наши знания также совместимы с огромным диапазоном отдельно взятых будущих событий. Что же касается прошлого, в нашем распоряжении имеется как знание о текущем макроскопическом состоянии Вселенной, так и понимание того факта, что в самом начале Вселенная находилась в состоянии с очень низкой энтропией. Этот крошечный фрагмент информации, называемый просто гипотезой о прошлом, превращается в огромное подспорье в деле реконструкции событий прошлого из настоящего.

Какой вывод мы должны сделать из всего этого? Наша свободная воля — возможность менять будущее путем принятия тех или иных решений, не распространяющаяся на события прошлого, доступна нам только потому, что у прошлого была низкая энтропия, а у будущего энтропия высокая. Будущее выглядит для нас чистой страницей, тогда как прошлое зафиксировано, несмотря на то что законы физики описывают их одинаково.

Поскольку мы живем во Вселенной с четко обозначенной стрелой времени, мы смотрим на прошлое и будущее по-разному не только с практической, повседневной точки зрения — в наших глазах эти вещи фундаментально отличаются. Прошлое записано в книгах, а на будущее мы можем повлиять своими действиями. Для космологии же наибольшее значение имеет то, что люди склонны объединять два направления исследований — «объяснение истории Вселенной» и «объяснение состояния Вселенной в начале времен», а будущее пусть само с собой разбирается. Наше неравноценное отношение к прошлому и будущему можно назвать временным шовинизмом; он крепко вжился в наш образ мыслей, и его крайне непросто искоренить. Однако законы природы никоим образом не поддерживают и не оправдывают ни временной, ни другие виды шовинизма. Размышляя о важных свойствах Вселенной, выясняя, что «реально», а что нет и почему в самом начале у Вселенной была низкая энтропия, нельзя ограничивать широту суждений, помещая прошлое и будущее по разные стороны баррикад. Объяснения, которые мы так стремимся найти, в конечном итоге никоим образом не должны зависеть от направления времени.

Главный урок, который мы должны извлечь из этого краткого экскурса в понятия энтропии и стрелы времени, прост: существование стрелы времени — одновременно важнейшая характеристика физической Вселенной и всепроникающая составляющая нашей повседневной жизни. Если честно, то даже неловко, что, несмотря на огромнейший прогресс, достигнутый современной физикой и космологией, мы все еще не получили окончательного ответа на вопрос, почему же Вселенная демонстрирует такую принципиальную асимметрию времени. Лично я нахожусь в замешательстве, но, так или иначе, любые трудности открывают новые возможности, и, размышляя об энтропии, мы можем узнать что-то новое о нашей Вселенной.


1 Эмис М. Стрела времени, или Природа преступления / Пер. с англ. М.: Астрель, 2011 (Amis, M. Time’s Arrow. New York: Vintage, 1991).


2 Фицджеральд Ф. Загадочная история Бенджамина Баттона / Пер. с англ. М.: Эксмо-Пресс, 2010 (Fitzgerald, F.S. The Curious Case of Benjamin Button // Collier’s Weekly, May 1922, p. 27.


3 Кэрролл Л. Алиса в Зазеркалье / Пер. с англ. М.: АСТ, 2010 (Carroll, L. Alice’s Adventures
 in Wonderland and Through the Looking Glass. New York: Signet Classics, 2000).


4 Очевидно.


5 Дидрик (Diedrick, J. Understanding Martin Amis. Charleston: University of South Carolina
Press, 1995) перечисляет еще несколько произведений, помимо упомянутых мной, в которых в той или иной форме используется прием обратного течения времени: «Сильвия и Бруно» Льюиса Кэрролла, «Завещание Орфея» Жана Кокто, «Никогда в жизни» Брайана Олдиса и «Время, назад» Филипа Дика. Для Мерлина, героя романа-эпопеи Теренса Уайта «Король былого и грядущего», время течет задом наперед, хотя Уайт не пытался использовать этот прием последовательно. Среди более свежих иллюстраций использования данной техники — «Гиперион» Дэна Симмонса; кроме того, тема обратного хода времени положена в основу «Исповеди Макса Тиволи» Эндрю Шона Грира и рассказа «Дневник, посланный за сотню световых лет» Грега Игана. В «Бойне номер пять» Воннегута приводится краткое описание «наоборот» бомбежки Дрездена зажигательными бомбами — Эмис упоминает его в послесловии к "Стреле времени«.


6 Стоппард Т. Аркадия. М.: Иностранка, 2008 (Stoppard, T. Arcadia, in Plays: Five. London: Faber and Faber, 1999).


7 Помимо первого начала термодинамики («в любом физическом процессе полная энергия сохраняется») и второго начала («энтропия замкнутой системы никогда не уменьшается»), есть также и третье начало: существует минимальное значение температуры (абсолютный ноль), при котором энтропия также находится на минимальном уровне. Эти три закона умещаются в простом высказывании: «Ты не можешь выиграть; не можешь остаться при своих; не можешь даже выйти из игры». Однако также есть нулевое начало: если две системы находятся в термодинамическом равновесии с третьей системой, то они находятся в термодинамическом равновесии друг с другом. Попробуйте здесь самостоятельно придумать какую-нибудь забавную аналогию.


8 Eddington, A. S. The Nature of the Physical World (Gifford Lectures). Brooklyn: AMS Press, 1927.


9 Сноу Ч. П. Две культуры и научная революция. Цитата воспроизведена по изданию: Сноу Ч. П. Портреты и размышления / Пер. с англ. М.: Прогресс, 1985. (Snow, C. P. The
 Two Cultures. Cambridge: Cambridge University Press, 1998).


10 В действительности справедливо было бы признать, что зачатки понятия энтропии и второго начала термодинамики были впервые озвучены отцом Сади Карно — французским математиком и офицером вооруженных сил Лазаром Карно. В 1784 году Лазар Карно написал трактат о механике, в котором утверждал, что создание вечного двигателя невозможно, так как в любой реальной машине полезная энергия будет рассеиваться вследствие дребезжания и тряски ее составляющих частей. Позднее он стал успешным предводителем армии революционной Французской Республики.

11 На самом деле это не совсем верно. Общая теория относительности Эйнштейна, объясняющая гравитацию в терминах искривления пространства—времени, подразумевает, что «энергия» в привычном понимании этого термина не остается постоянной, например, в расширяющейся Вселенной. Мы подробнее поговорим об этом в главе 5. При рассмотрении же большинства двигателей внутреннего сгорания расширением Вселенной можно пренебречь, и для них энергия действительно остается постоянной.


12 Конкретнее, под формулировкой «мера количества расстановок отдельных частей» мы подразумеваем «пропорциональность логарифму количества перестановок отдельных
 частей». Подробное обсуждение логарифмов вы найдете в приложении, а в девятой главе детально рассматривается статистическое определение энтропии.

13 В англоязычной литературе универсальное обозначение «log» используется для обозначения любых логарифмов — как десятичных, так и натуральных. Это неудобно, поэтому десятичный логарифм иногда обозначают «lg», а натуральный — «ln». — Примеч.
 пер.

14 Температура поверхности Солнца составляет приблизительно 5800 кельвинов (один
кельвин равен одному градусу Цельсия, только нулевая отметка по шкале Кельвина соответствует отметке –273 градусов по шкале Цельсия и представляет собой абсолютный ноль — минимальную возможную температуру). Комнатная температура — около 300 кельвинов. Температура космического пространства — или, точнее, фонового космического излучения, заполняющего космос, — около трех кельвинов. Интересное обсуждение роли Солнца как горячего пятна на холодном небе можно найти в книге: Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. — Изд-во ЛКИ, 2008 (Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford: Oxford University Press, 1989).


15 Иногда вам могут встречаться заявления креационистов о том, что эволюция, как ее описывал Дарвин в своей теории естественного отбора, несовместима с принципом увеличения энтропии, поскольку история жизни на Земле — это история непрерывно усложняющихся организмов, предположительно происходящих из намного более простых форм. Эти бредовые заявления запросто разбиваются в пух и прах множеством доводов. На простейшем уровне: второе начало термодинамики относится к замкнутым системам, а организм (или вид, или биосфера) — это не замкнутая система. Мы чуть подробнее поговорим об этом в главе 9, но, по сути, этого достаточно.


16 Thomson, W. On the Age of the Sun’s Heat // Macmillan’s, 1862, 5, p. 288—293.


17 Пинчон Т. Энтропия / Пер. с англ. С. Кузнецова // Иностранная литература, 1996, № 3
 (Pynchon, T. Slow Learner. Boston: Back Bay Books, 1984).



Комментировать


 


при поддержке фонда Дмитрия Зимина - Династия