Элементы Элементы большой науки

Поставить закладку

Напишите нам

Карта сайта

Содержание
Энциклопедия
Новости науки
LHC
Картинка дня
Библиотека
Видеотека
Книжный клуб
Задачи
Масштабы: времена
Детские вопросы
Плакаты
Научный календарь
Наука и право
ЖОБ
Наука в Рунете

Поиск

Подпишитесь на «Элементы»



ВКонтакте
в Твиттере
в Фейсбуке
на Youtube
в Instagram



Библиотека

 
Д. Элленберг
«Как не ошибаться». Глава из книги


Д. Дойч
«Структура Реальности: Наука параллельных вселенных». Глава из книги


В. Власов
В окаменевших лесах Аризоны


Н. Карпушина
Сокровище геометрии


Н. Семаков, А. Ковалев, А. Павлов, О. Федотова
Куда бежит магнитный полюс?


П. Образцов
«Удивительные истории о существах самых разных». Глава из книги


Б. Дружинин
Путешествие №1 по зоопарку элементов


К. Постнов
Быстрые радиовсплески: ключ к разгадке тайны


Н. Резник
Дорога на работу — путь к артриту


В. Гаврилов
Как зимующие птицы используют людей







Главная / Новости науки версия для печати

Детектор ATLAS увидел рассеяние света на свете


Рождение двух фотонов умеренно большой энергии в детекторе ATLAS

Рис. 1. Рождение двух фотонов умеренно большой энергии в детекторе ATLAS без сопровождения других частиц. Рисунок с сайта cerncourier.com

Коллаборация ATLAS, работающая на Большом адронном коллайдере, сообщила о надежной регистрации знаменитого, но трудного для измерения процесса квантовой электродинамики — рассеяния света на свете. Это удалось сделать после обработки данных по столкновению тяжелых ядер большой энергии в 2015 году. Измеренные характеристики процесса в пределах погрешностей совпадают с предсказаниями Стандартной модели.

Процесс упругого столкновения двух фотонов γγ → γγ, или «рассеяние света на свете», — это один из знаменитых примеров того, как квантовые эффекты меняют законы классической электродинамики. В рамках обычной оптики два луча света, проходящие друг сквозь друга в вакууме, никак не взаимодействуют, не влияют друг на друга. В квантовой теории поля такое влияние становится возможным: один из фотонов на короткое время превращается в виртуальную пару заряженных частиц, и на ней рассеивается встречный фотон (рис. 2).

Рис. 2. Фейнмановская диаграмма, описывающая процесс столкновения двух фотонов

Рис. 2. Фейнмановская диаграмма, описывающая процесс столкновения двух фотонов. Рисунок с сайта es.wikipedia.org

Для обычных оптических фотонов сечение этого рассеяния настолько мало, что нет никакого шанса зарегистрировать его в лаборатории. Однако с повышением энергии фотонов сечение резко растет, и его можно заметить на космических масштабах (см.  на эту тему задачу Столкновение фотонов). В лабораторных экспериментах с элементарными частицами «рассеяние света на свете» для больших энергий фотонов тоже иногда встречается. Самые известные варианты этого процесса, уже зарегистрированные в эксперименте, — это рождение двух фотонов через промежуточные мезоны в электрон-позитронных столкновениях, а также рассеяние либо расщепление фотона на два в поле тяжелого ядра.

И вот этот красивый процесс впервые увидели на Большом адронном коллайдере: коллаборация ATLAS опубликовала на днях статью Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC (arXiv:1702.01625) с результатами этого анализа. Статья направлена в журнал Nature Physics; популярный рассказ об этой работе появился в журнале CERN Courier.

Анализ базируется на данных, набранных в 2015 году во время специального сеанса ядерных столкновений. Польза от тяжелых ядер в том, что из-за большого электрического заряда вокруг них создается сильное электрическое поле. Два встречных ядра могут «промазать», пролететь мимо друг друга без столкновений, но их электрические поля — столкнутся. Очень важно, что сами ядра при этом летят с околосветовой скоростью. То, что выглядит как обычное электростатическое поле для покоящегося ядра, превращается для быстрого ядра в поле электромагнитное, то есть в поток почти реальных фотонов большой плотности, которые летят рядом с ядром. Может показаться удивительным, что одна и та же система (в нашем случае — ядро и его поле) выглядят совершенно по-разному в разных системах отсчета, но таковы свойства квантового микромира; подробнее об этом на примере сильного взаимодействия читайте в статье Многоликий протон. В итоге эти почти реальные фотоны от двух встречных ядер сталкиваются и разлетаются в стороны, — именно их и регистрирует детектор (рис. 3). Подробнее про двухфотонные процессы можно узнать из серии видеолекций В. Г. Сербо из НГУ.

Рис. 3. Два встречных ядра высокой энергии могут столкнуться не напрямую, а своими электромагнитными полями

Рис. 3. Два встречных ядра высокой энергии могут столкнуться не напрямую, а своими электромагнитными полями, и в этом электромагнитном столкновении может родиться система частиц X. Рассеяние света на свете — это процесс, когда X — это два фотона большой энергии. Изображение из обсуждаемой статьи

Характерная особенность такого процесса — его исключительная чистота, отсутствие в детекторе посторонних частиц. На рис. 1 показано одно такое событие-кандидат в рассеяние света на свете. Вместо тысяч частиц, которые обычно видит детектор в жестких ядерных столкновениях, здесь всё пусто, есть только два фотона с противоположными поперечными импульсами. Благодаря этому, отбор событий производится очень эффективно: среди миллиардов событий, зарегистрированных детектором ATLAS, только 13 прошли все стадии отбора. Конечно, во всех поисках может существовать фон из посторонних процессов, но для этого анализа он совсем низкий: по результатам моделирования ожидалось всего 2,6±0,7 фоновых событий. Таким образом, ATLAS видит существенное превышение данных над фоном и сообщает о надежных указаниях на рассеяние света на свете в области энергий несколько ГэВ (статистическая значимость эффекта — 4,4σ).

Даже с 13 событиями можно провести некоторый статистический анализ. Коллаборация ATLAS изучила распределение событий по углам вылета, поперечному импульсу и его дисбалансу, по инвариантной массе, а также измерила сечение процесса: 70±24±17 nb (здесь указаны статистическая и систематическая погрешности). Оно оказалось чуть выше предсказаний Стандартной модели для этого диапазона энергий и быстрот (40–60 nb), но вполне согласуется с ним в пределах погрешностей.

Нельзя сказать, что от этого процесса ожидали каких-то сюрпризов. Интерес тут, скорее, «статусный» — зарегистрировать в чистом виде, без «помощи» промежуточных мезонов-резонансов, классический, но трудноуловимый эффект, который постоянно упоминается во вводных курсах квантовой физики.

Источник: ATLAS Collaboration. Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC // препринт arXiv:1702.01625 [hep-ex].

Игорь Иванов


Комментарии (30)



Последние новости: Детектор ATLASLHCЯдерные столкновенияИгорь Иванов

13.10
Ядерная материя близка к точке квантового фазового перехода
10.10
Нобелевская премия по физике — 2016
22.08
Наконец-то обнаружен аналог излучения Хокинга в холодном квантовом газе
17.08
Спектроскопия мюонного дейтерия обострила проблему с радиусом протона
05.08
Двухфотонный пик исчез в новых данных коллайдера
27.07
Рекордные по чувствительности эксперименты LUX и PandaX пока не поймали частицы темной материи
20.06
LIGO поймала новые всплески гравитационных волн
27.04
Теоретики продолжают искать объяснения двухфотонному пику
01.04
Обнаружены коллективные эффекты в поведении физиков-теоретиков
23.03
Загадочный двухфотонный пик проступает всё сильнее

Научная картинка дня


Новости науки по темам: антропология, археология, астрономическая научная картинка дня, астрономия, биология, биотехнологии, генетика, геология, затмения, информационные технологии, космос, лингвистика, математика, медицина, нанотехнологии, наука в России, наука и общество, Нобелевские премии, палеонтология, Первое апреля, психология, технологии, физика, химия, эволюция, экология, энергетика, этология

Новости науки по авторам: Валентин Анаников, Дарья Баранова, Вера Башмакова, Александр Бердичевский, Максим Борисов, Варвара Веденина, Александр Венедюхин, Михаил Волович, Михаил Гарбузов, Алексей Гиляров, Дмитрий Гиляров, Сергей Глаголев, Евгений Гордеев, Николай Горностаев, Владимир Гриньков, Дмитрий Дагаев, Юрий Ерин, Анастасия Еськова, Дмитрий Жарков, Андрей Журавлёв, Дмитрий Замолодчиков, Игорь Иванов, Вячеслав Калинин, Павел Квартальнов, Мария Кирсанова, Дмитрий Кирюхин, Александр Козловский, Юлия Кондратенко, Артем Коржиманов, Ольга Кочина, Аркадий Курамшин, Виталий Кушниров, Иван Лаврёнов, Алексей Левин, Андрей Логинов, Сергей Лысенков, Лейла Мамирова, Александр Марков, Мария Медникова, Вадим Мокиевский, Григорий Молев, Тарас Молотилин, Антон Морковин, Марат Мусин, Максим Нагорных, Елена Наймарк, Алексей Опаев, Петр Петров, Александр Пиперски, Константин Попадьин, Сергей Попов, Роман Ракитов, Татьяна Романовская, Александр Самардак, Александр Сергеев, Андрей Сидоренко, Виктория Скобеева, Даниил Смирнов, Павел Смирнов, Дарья Спасская, Любовь Стрельникова, Дмитрий Сутормин, Алексей Тимошенко, Александр Токарев, Александр Храмов, Мария Шнырёва, Сергей Ястребов, Светлана Ястребова

Новости науки по месяцам: 2017 III, II, I  2016 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2015 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2014 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2013 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2012 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2011 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2010 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2009 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2008 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2007 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2006 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I  2005 XII, XI, X, IX, VIII, VII, VI, V, IV, III, II, I 

Новости науки почтой (рассылка на Subscribe.ru):

 


Где еще почитать научные новости: «Биомолекула», «Вокруг света», Газета.ру. Наука, «Индикатор», «Наука и жизнь», Наука и технологии РФ, «Научная Россия», «Популярная механика», РИА Наука, «Чердак», N+1, Naked Science

 


при поддержке фонда Дмитрия Зимина - Династия